The Development of a Hybrid Asymptotic Expansion for the Hardy Function , Consisting of Just Main Sum Terms, Some Less than the Celebrated Riemann-siegel Formula

نویسنده

  • D. M. Lewis
چکیده

This paper begins with a re-examination of the Riemann-Siegel Integral, which first discovered amongst by Bessel-Hagen in 1926 and expanded upon by C. L. Siegel on his 1932 account of Riemann’s unpublished work on the zeta function. By application of standard asymptotic methods for integral estimation, and the use of certain approximations pertaining to special functions, it proves possible to derive a new zeta-sum for the Hardy function . In itself this new zeta-sum (whose terms made up of elementary functions, but are unlike those that arise from the analytic continuation of the Dirichlet series) proves to be a computationally inefficient method for calculation of . However, by further, independent analysis, it proves possible to correlate the terms the new zeta-sum with the terms of the Riemann-Siegel formula, thought, since its discovery by Siegel, to be the most efficient means of calculating . Closer examination of this correlation reveals that is possible to formulate a hybrid asymptotic formula for , consisting of a sum containing both Riemann-Siegel terms and terms from the new zeta-sum, in such a way as to reduce the overall CPU time required by a factor between . Alongside the obvious computational benefits of such a result, the very existence of the new zeta-sum itself highlights new theoretical avenues of study in this field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

On the Riemann-Siegel formula

In this article we derive a generalization of the Riemann-Siegel asymptotic formula for the Riemann zeta function. By subtracting the singularities closest to the critical point we obtain a significant reduction of the error term at the expense of a few evaluations of the error function. We illustrate the efficiency of this method by comparing it to the classical Riemann-Siegel formula.

متن کامل

HYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...

متن کامل

Asymptotic Euler-Maclaurin formula for Delzant polytopes

Formulas for the Riemann sums over lattice polytopes determined by the lattice points in the polytopes are often called Euler-Maclaurin formulas. An asymptotic Euler-Maclaurin formula, by which we mean an asymptotic expansion formula for Riemann sums over lattice polytopes, was first obtained by Guillemin-Sternberg [GS]. Then, the problem is to find a concrete formula for the each term of the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015